Saturday, 20 September 2014

Voltage divider circuit - stability factor (Sβ)

Myself  Stability factor Sβ. My address is S\beta  =  \frac{{dIc}}{{d\beta }}
To view my history visit  Stability factors & Biasing circuits
 
Request you to visit my Seniors also-    Voltage divider bias - Stability factor 'S' 
                                                                                                                                                          and             
                                                                         Voltage divider circuit - stability factor (Sv)

Referring to Thevenin's equivalent of Voltage divider circuit(fig 1)- ( details are given in Voltage divider bias - Stability factor 'S'   )- equation for Thevenins voltage is given below.

fig 1

{E_{TH}} = {I_B}{R_{TH}} + {V_{BE}} + {I_B}{R_E} + {I_{_C}}{R_E}  -------(1) then,

{E_{TH}} = {V_{BE}} + {I_{_C}}{R_E} + {I_B}\left( {{R_E} + {R_{TH}}} \right)  substitute for IB

{E_{TH}} = {V_{BE}} + {I_{_C}}{R_E} + \frac{{{I_C}}}{\beta }\left( {{R_E} + {R_{TH}}} \right)  re-arrange

({E_{TH}} - {V_{BE}})\beta  = {I_{_C}}{R_E}\beta  + Ic\left( {{R_E} + {R_{TH}}} \right)  differentiate this equation with respect to β

{E_{TH}} - {V_{BE}} = {R_E}\beta \frac{{d{I_{_C}}}}{{d\beta }} + {I_C}{R_E} + \frac{{dIc}}{{d\beta }}\left( {{R_E} + {R_{TH}}} \right)  we have dIc/dβ = Sβ

{E_{TH}} - {V_{BE}} = {R_E}\beta {S_\beta } + {I_C}{R_E} + {S_\beta }\left( {{R_E} + {R_{TH}}} \right)   re-arrange

{E_{TH}} - {V_{BE}} = {S_\beta }({R_E}\beta  + {R_E} + {R_{TH}}) + {I_C}{R_E} 

{S_\beta } = \frac{{{E_{TH}} - {V_{BE}} - {I_C}{R_E}}}{{{R_E}\beta  + {R_E} + {R_{TH}}}}   -------(2)   Numerator of this equation can be substituted using equ(1). 

From equation (1) we will get,   {E_{TH}} - {V_{BE}} - {I_{_C}}{R_E} = {I_B}{R_{TH}} + {I_B}{R_E}  Substitute in (2).

{S_\beta } = \frac{{{I_B}{R_{TH}} + {I_B}{R_E}}}{{{R_E}\beta  + {R_E} + {R_{TH}}}}

{S_\beta } = \frac{{{I_B}({R_E} + {R_{TH}})}}{{{R_E}\beta  + {R_E} + {R_{TH}}}} -------(3) divide numerator and denominator with RTH+RE .


{S_\beta } = \frac{{{I_B}}}{{1 + \beta \frac{{{R_E}}}{{{R_E} + {R_{TH}}}}}}   -----------(4)  Smelling some similarity with equation of 'S'. Verify equ(7).

Now we can follow conclusion for 'S' and also can substitute 'S' in the above equation (4).

{S_\beta } = \frac{{S{I_B}}}{{1 + \beta }}   Substitute for IB in terms of  Ic.

{S_\beta } = \frac{{SIc}}{{\beta (1 + \beta )}}

Like 'S', Sβ  also depends on values of RTH and RE .
For visiting other stability factors for voltage divider circuit - S and Sv .           
HTML Comment Box is loading comments...